Intervertebral neural foramina deformation due to two types of repetitive combined loading.
نویسندگان
چکیده
BACKGROUND Tissue compression and noxious stimuli are known to elicit pain from neural tissues in the spine. Compression of nerve roots due to decreases in the intervertebral foramina may be caused by posture, sustained loading and disc height loss, herniation, or altered mechanics. It has been established that non-neutral postures combined with repeated loading can cause disc herniations, however information regarding the effect of repetitive axial twist loading is limited. The objectives of this study were twofold; to measure the occlusion of the foramina due to two types of repetitive loading and to investigate whether repetitive combined axial twist loading can contribute to disc injury. METHODS Sixteen porcine cervical spine segments (C5/6) were subjected to 1500 N of compression combined with either repetitive flexion-extension motions or 16.4 degrees (Standard Deviation 2.1) of static flexion with repetitive axial twist motions. The foramina pressure was measured bilaterally using plastic tubing and a custom pressure monitoring system. Specimens were loaded until 10,000 cycles were reached or disc herniation occurred. FINDINGS Significantly larger pressure (pre-post difference) developed in the intervertebral foramina of specimens that were repetitively flexed-extended (P=0.028) compared to those that were repetitively twisted. All of the flexed-extended specimens herniated, whereas in the twisted specimens five (62.5%) had incomplete herniations, one (12.5%) sustained a facet fracture, and two (25%) had no damage. There was no difference between the loading groups for vertical height loss (P=0.994). INTERPRETATION Repetitive loading of flexion-extension motions are a viable pain generating pathway in absence of distinguishing height loss. This information may be useful to consider for the diagnosis and treatment of nerve root compression.
منابع مشابه
Occult lumbar lateral spinal stenosis in neural foramina subjected to physiologic loading.
PURPOSE To measure the effect of extension, flexion, lateral bending, and axial rotation loads applied to the spine on the anatomic relationship of the spinal nerves in the neural foramen to the ligamentum flavum and the intervertebral disk, anc to determine the effect of disk degeneration on the response to loading. METHODS Cadaveric lumbar motion segments were examined with CT and MR imagin...
متن کاملMorphological changes of the caudal cervical intervertebral foramina due to flexion-extension and compression-traction movements in the canine cervical vertebral column
BACKGROUND Previous studies in humans have reported that the dimensions of the intervertebral foramina change significantly with movement of the spine. Cervical spondylomyelopathy (CSM) in dogs is characterized by dynamic and static compressions of the neural components, leading to variable degrees of neurologic deficits and neck pain. Studies suggest that intervertebral foraminal stenosis has ...
متن کاملNumerical and Experimental Study on Ratcheting Behavior of Steel Cylindrical Shells with/without Cutout Under Cyclic Combined and Axial Loading
Ratcheting behavior of steel 304L cylindrical shell under cyclic combined and axial loading are investigated in this paper, numerically. Cylindrical shells were fixed oblique at angle of 20° and normal with respect to the longitudinal direction of the shell and subjected to force-controlled cycling with non-zero mean force, which causes the accumulation of plastic deformation or ratcheting beha...
متن کاملPrediction of Deformation of Circular Plates Subjected to Impulsive Loading Using GMDH-type Neural Network
In this paper, experimental responses of the clamped mild steel, copper, and aluminium circular plates are presented subjected to blast loading. The GMDH-type neural networks (Group Method of Data Handling) are then used for the modelling of the mid-point deflection thickness ratio of the circular plates using those experimental results. The aim of such modelling is to show how the mid-point de...
متن کاملEvaluation of stiffness and plastic deformation of active ceramic self-ligating bracket clips after repetitive opening and closure movements.
OBJECTIVE The aim of this study was to assess whether repetitive opening and closure of self-ligating bracket clips can cause plastic deformation of the clip. METHODS Three types of active/interactive ceramic self-ligating brackets (n = 20) were tested: In-Ovation C, Quicklear and WOW. A standardized controlled device performed 500 cycles of opening and closure movements of the bracket clip w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical biomechanics
دوره 24 1 شماره
صفحات -
تاریخ انتشار 2009